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Although an increasing amount of human genetic variation is being identified and recorded, determining variants within
repeated sequences of the human genome remains a challenge. Most population and genome-wide association studies have
therefore been unable to consider variation in these regions. Core to the problem is the lack of a sequencing technology that
produces reads with sufficient length and accuracy to enable unique mapping. Here, we present a novel methodology of
using read clouds, obtained by accurate short-read sequencing of DNA derived from long fragment libraries, to confidently
align short reads within repeat regions and enable accurate variant discovery. Our novel algorithm, Random Field Aligner
(RFA), captures the relationships among the short reads governed by the long read process via a Markov Random Field. We
utilized a modified version of the Illumina TruSeq synthetic long-read protocol, which yielded shallow-sequenced read
clouds. We test RFA through extensive simulations and apply it to discover variants on the NA12878 human sample, for
which shallow TruSeq read cloud sequencing data are available, and on an invasive breast carcinoma genome that we se-
quenced using the samemethod.We demonstrate that RFA facilitates accurate recovery of variation in 155Mb of the human
genome, including 94% of 67 Mb of segmental duplication sequence and 96% of 11 Mb of transcribed sequence, that are
currently hidden from short-read technologies.

[Supplemental material is available for this article.]

Although next-generation sequencing (NGS) technologies have
enabled whole-genome sequencing (WGS) of many individuals
to identify variation, current large-scale and cost-effective rese-
quencing platforms produce reads of limited length (Shendure
and Ji 2008; Metzker 2010); and as a result, variant identification
within repeated sequences remains challenging. The 1000 Ge-
nomes Project Consortium has reported that nearly 6% of the
GRCh37 human genome reference is inaccessible by short-read
technologies (The 1000 Genomes Project Consortium 2012). Fur-
ther studies have shown that as much as 10% of GRCh37 cannot
be aligned to for the purpose of accurate variant discovery (Lee
and Schatz 2012).

The portion of the human genome that is currently dark to
short-read technologies is significant in both its size and pheno-
typic effect. Recent segmental duplications (also referred to as
low copy repeats), consisting of regions >5 kbp in size and >94%
sequence identity, have been identified as making up 130.5 Mb,
or∼4.35%of the humangenome (Bailey et al. 2002). These regions
tend to be hotspots of structural and copy number variants (CNVs)
(Coe et al. 2014; Chaisson et al. 2015) that in aggregate affect a
larger fraction of the genome than that affected by single nucleo-
tide polymorphisms (SNPs) (Conrad et al. 2010). CNVs have been
associated with diseases such as autism (Sebat et al. 2007; Pinto
et al. 2010), Crohn’s disease (Wellcome Trust Case Control

Consortium et al. 2010), schizophrenia (Stefansson et al. 2008;
McCarthy et al. 2009), and neurocognitive disorders (Coe et al.
2014). However, current short-read technologies are unable to
identify precise nucleotide variation in these regions.

In principle, longer sequencing reads provide an opportunity
to disambiguate repeated sequences. Technologies such as Pacific
Biosciences (PacBio) (McCarthy 2010) and Oxford Nanopore
(Ashton et al. 2014) produce long reads, but at much higher per-
base error rate. PacBio has been leveraged for improved bacterial
reference genome assemblies (Koren et al. 2013) and for targeted
de novo assembly of the complex 1.3Mb of 17q21.31 (Huddleston
et al. 2014). However, these technologies are currently sub-
stantially lower in throughput and higher in cost than short-read
technologies and so cannot currently be used to cost-effectively
uncover variation in repeated regions of the genome.

An alternative approach used in LFR (Peters et al. 2012), CPT-
seq (Amini et al. 2014), and Illumina TruSeq Synthetic Long-Reads
(previously known as Moleculo) (Kuleshov et al. 2014) utilizes ac-
curate short-read sequencing of long DNA fragments in order to
obtain long-range information at high nucleotide accuracy. The
Illumina TruSeq protocol is able to produce 10-kbp long reads, re-
taining the benefits of the highly accurate and cost-effective
Illumina technology (Kuleshov et al. 2014) and enabling human
genome phasing (Kuleshov et al. 2014) and de novo assembly of
complex genomes (Voskoboynik et al. 2013; McCoy et al. 2014).

Under Illumina’s synthetic long-read protocol, DNA sequenc-
ing libraries are prepared as follows: First, the genomic DNA is
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sheared into long (≥10 kbp) fragments and ligated with amplifica-
tion adapters at both ends; second, these molecules are diluted
into wells so that each well receives only a small fraction (1%–

2%) of the genome; third, molecules are amplified, sheared into
short fragments, and uniquely barcoded within each well
(Kuleshov et al. 2014). The individual wells are then pooled and se-
quenced together. Demultiplexing the resulting reads by well bar-
code and aligning them to the reference genome yields clusters of
short reads, which we call read clouds, each of which originated
from a single long DNA molecule (Fig. 1A). Additionally, short
reads that originate from the endpoints of a read cloudwill overlap
the original adapters ligated to the longmolecules and serve as end-
markers of the original long molecule.

A read cloud approach has two key parameters for genome
coverage (Fig. 1): coverage of the genome with long DNA frag-
ments, CF, and coverage of each long fragment with short reads,
CR. The total sequencing depth is then C =CF ×CR. The choice of
CF andCR for a given short-read sequencing budgetCheavily influ-
ences the ability of the read cloud approach to accurately discover
variation within a target genome. Both CF and C have to be suffi-
ciently high; in particular, CF has to be high enough so that both
haplotypes of a diploid genome are covered with a sufficient num-
ber of long fragments (Lander and Waterman 1988). The original
protocol (McCoy et al. 2014) required for each well to be se-
quenced at a high depth (CR = 50×) in order to first de novo assem-
ble synthetic long reads (SLR) of the original source long fragments
(Fig. 1B; Voskoboynik et al. 2013). However, performingWGSwith
this approach requires an exorbitant amount of total sequencing
in order to obtain a sufficiently high CF. For example, if CR = 50×
(Voskoboynik et al. 2013) and CF = 20×, C = 50 × 20 = 1000×, or
the equivalent of 33 whole human genomes sequenced at the cur-
rently standard 30× coverage.

The alternative strategy to true SLR approaches is to bypass
the requirement for actual assembly of the original long fragments
and tominimize short-read coverage (CR≤ 2×). This strategy allows
a sufficiently high CF in order to cover a genome at a reasonable
coverage budget C. Choosing CR = 1.5 and CF = 20×, C = 1.5 × 20
= 30×, would yield valuable long-range information for the same

total sequencing cost as the currently standard short-read WGS
approach.

In this work, we present RFA (Random Field Aligner), a novel
methodology that utilizes the highCF, lowCR read cloud approach
to confidently map short reads within repetitive regions. In RFA,
we directly model the short-read generative process from source
longmolecules in order to capture the dependencies of short reads
through the hidden source longmolecules. Using this probabilistic
approach, we reduce the problem of finding optimal short-read
alignments to optimizing a Markov Random Field (MRF). The re-
sulting alignments tend to cluster the mapped reads into read
clouds that fit the properties of the synthetic long-read sequencing
protocol. The model naturally favors alignment of a read cloud to
the specific copy of a repeated sequence that minimizes the se-
quence variation of the read cloud to the copy.

To our knowledge, RFA is the first attempt to take advantage
of the long-range information present in shallow read cloud se-
quencing to improve the resulting short-read alignments and
also to use read clouds to directly genotype an individual. Prior im-
plementations of read clouds to provide molecular-phased geno-
types for a single individual require known genotypes as input
(Kitzman et al. 2011; Amini et al. 2014; Kuleshov et al. 2014)
and typically align the resulting read clouds with standard short-
read aligners in order to observe the allele at a known SNV within
each read cloud. As genotypes are typically determinedwith a stan-
dard whole-genome 30× shotgun sequencing, in which a short-
read workflow would be used, variants in complex regions would
remain unresolved.

We demonstrate the utility of our approach using shallow-
sequenced read clouds (CR = 1.5×) obtained from the Illumina
TruSeq synthetic long-read protocol (henceforth referred to
as TruSeq read clouds to avoid confusion with the Illumina
product that uses deep sequencing to assemble synthetic long
reads). We tested our approach on simulated read cloud wells,
on TruSeq read cloud libraries for the cell line GM12878 for
which assembled synthetic long reads are also available for di-
rect validation (Genomes Moleculo NA12878, 2014, ftp://ftp
.1000genomes.ebi.ac.uk/vol1/ftp/phase3/integrated_sv_map/

supporting/NA12878/moleculo/), and on
a high coverage cancer sample that we
sequenced. Evaluation of the results
confirmed that our method accurately
recovers precise nucleotide variation
within a significant fraction of the hu-
man genome that was previously dark to
current short-read technologies. We are
able to leverage the read cloud strategy
to recover this variation at a fraction of
the cost of the original protocol and elim-
inate the need for first assembling syn-
thetic long reads.

Results

Overview of algorithms
In order to accurately align short reads
resulting from a synthetic long-read
protocol, we developed a probabilistic
framework to model the process by
which read clouds are generated. In this
framework, each well contains a set of
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Figure 1. Read clouds (RC) and synthetic long reads (SLR) obtained by Illumina TruSeq Synthetic
Long-Read sequencing. Each well initially contains long molecules that represent a small fraction of
the target genome; reads from each long molecule are separated in genomic coordinates within the tar-
get genome, and therefore, clusters of such reads (read clouds) are formed with each cluster originating
from one source fragment. Blue reads denote end-markers of the source fragments and may not always
be present as sequenced short reads. (A) In the RC approach, long fragments from several wells wn are
sequenced to a shallow depth and aligned to the reference to obtain read clouds. Pooling of reads across
several read clouds allows inference of the variation in the underlying long fragments. (B) In the SLR ap-
proach, long fragments are sequenced to a much higher depth to enable de novo assembly of synthetic
long reads. For the same total sequencing budget C, the RC approach covers proportionally more target
genome space than the SLR approach.
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hidden source long fragments, M, that generate the short-read
fragments,R. Read alignment is then the problem of jointly align-
ing all the reads of a given well to the target genome to maximize
the probability of the observed reads, P(R). The probability distri-
bution over the reads in each well can be written as

P(R) =
∑

M
P(R|M)P(M ),

where P(R|M) is the short-read generative process from long frag-
ments; P(M) is our prior belief over possible hidden long fragment
configurations; and the sum is over all possible hidden configura-
tions. Tomake computation of P(R) tractable, we developed a heu-
ristic to first determine the candidate long fragments in each well,
and with these seeds, construct a Markov Random Field (MRF) in
which each candidate long molecule induces a single potential
function over the reads (see Methods).

RFA leverages our model of the read cloud generation process
to produce unique alignments to specific copies of repeated se-
quences (Fig. 2). Wells from the sample are first aligned to the ref-
erence using an existing short-read aligner. The features of
uniquely mapped read clouds are used to learn P(M), which cap-
tures protocol properties such as the long fragment size distribu-
tion. Each well is then aligned separately using the following
steps: First, we use an existing short-read aligner to produce multi-
ple candidate alignments for short reads and to determine the po-
sitions of potentially sampled long fragments M; second, we
perform approximate inference on our model to identify a maxi-

mum a posteriori (MAP) assignment

rMAP = argmax
r

∑

M
P(R = r|M)P(M ). (1)

Last, we use this MAP assignment to compute probability
queries for both short-read alignment confidence and long frag-
mentmappability. Simulations indicated this approach to be high-
ly accurate and efficient in contrast to sampling approaches to
compute the marginal, P(Rn), for each read. The precise definition
of our framework, together with details for efficient identification
of the MAP assignment rMAP in Equation 1 and computation of
the queries, is described in Methods.

Alignment accuracy in simulations
In order to determine the utility of RFA over the standard short-
read alignment approach, we simulated read clouds from synthetic
long read data as described in Methods. From these data, we used
the following four different sets of alignments and quality scores
that serve as comparison points:

• Baseline represents the standard method of aligning short-reads
without the benefit of information from a long read process.

• Naive represents thenaive approachof first creating an abbreviat-
ed reference corresponding to candidate longmolecules within a
well and then realigning the short reads directly to this reference.

• RFA is ourmethod that utilizes the same abbreviated reference as
in naive, and subsequently uses probabilistic inference over an
MRF in order to realign the short reads to this reference.
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Figure 2. RFA overview. (A) Wells wn from the sample are first aligned to the reference using an existing short-read aligner, and uniquely mapped read
clouds are used to learn a prior P(M), which captures protocol properties such as the long fragment size distribution. (B) Eachwell is aligned separately with
the aid of a short-read aligner to determine candidate source long fragment locations as well as multiple candidate short-read alignments to the long frag-
ments. Finally, MAP inference is performed to converge on optimal alignments. In this example, RFA successfully determines the correct repeat copy R that
overlaps with a source long fragment.
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• Oracle represents the theoretical upper limit of first aligning the
reads to the abbreviated reference using the short-read aligner
while allowing for multiple mappings, and then picking the
true mapping for each read, if that mapping was returned by
the short-read aligner.

We simulated alignment of 1000 wells and computed results
of each of the preceding approaches after we filtered reads with a
MAPQ less than 10 (corresponding to <90%mapping confidence).
The percentage of reads in eachwell correctly placed by RFA is very
similar to Oracle, whereas the Baseline and Naive approaches have
significantly lower accuracy (Fig. 3A). RFA confidentlymaps an ad-
ditional 2.9% (out of 3.2% fromOracle) of the total reads over the
Baseline approach. The results are similar when restricted to reads
that were multimapped in the abbreviated reference, which signi-
fies the usefulness of RFA over the naive approach (Fig. 3B). Our
probabilistic approach with RFA is able to achieve 92% of the
Oracle performance and place an additional 29% of multimapped
reads confidently over the naive approach. RFA’s error rate, com-
puted by assessing the number of incorrectly placed multimapped
reads with >90% confidence, was ∼1% across all simulated wells.

Characterization of recovered regions
Our approach accurately aligns short reads to 90.6% (155 Mb) of
the 171 Mb of the human genome deemed inaccessible to short-
read technologies by the 1000 Genomes Project Consortium. To
understand the nature of these recovered regions, we tabulated
their RepeatMasker (Smit et al. 1996) and segmental duplication
annotations (Bailey et al. 2001; Kent et al. 2002). We are able to re-
cover the majority of previously ambiguous elements across all re-
peat categories (90%), including 94% of 67 Mb of the segmental
duplications and 96% of 11 Mb of transcribed sequences that fall
within the 171 Mb of currently inaccessible sequence (Table 1).
Both high copy repetitive elements as well as long stretches of am-
biguous segmental duplications with high sequence identity are
accurately illuminated by our approach.

To quantify gene content in the 155 Mb of inaccessible re-
gions that we recovered with RFA, we used annotations from
GENCODE (Harrow et al. 2012).We found that these regions cover
>80% of the length of 2740 genes, and >50% of the length of 4510
genes, with both significant enrichment and depletion by type
(Table 2). Examining these genes by family also shows significant

enrichment and depletion (Table 3). A previous study that used
copy number genotyping to examine gene families falling into
paralogous regions (Sudmant et al. 2010) found several families to
be highly variable and dynamic between individuals and popula-
tions. Of the highly dynamic gene families previously identified,
we found ANKRD, ZNF, endogenous ligands, CD, RBM, and RNF
families to be enriched in our recovered gene set. Preliminary anal-
ysis indicates that the gene content in these regions is both highly
variable and also heavily understudied due to the limitations of ex-
istingNGS technologies. Thenucleotide-level populationvariation
that our method uncovers could facilitate functional annotation
and disease association in these gene-rich repeat regions.

SNV identification within recovered regions
We next applied RFA to two shallow-sequenced TruSeq read cloud
samples (CR = 1.5×).We identified SNVswith thesenewalignments
and performed validation in order to determine our variant discov-
ery accuracy within repeat regions. For each sample, we aligned
each well separately using RFA, applied the GATK (DePristo et al.
2011) pipeline to the resulting alignments of all wells simultane-
ously to recover candidate germline variants, and used computed
queries to further filter these candidates to produce variants (see
SupplementalMaterial for details).Wecompared the resulting calls
withvariant callsperformedusing the sameGATKpipelinewithout
application of RFA or read cloud information.

NA12878 sample

We first applied RFA to three shallowTruSeq read cloud libraries for
the HapMap sample NA12878. The first library (CR = 1.5×, CF =
6.2×) (Kuleshov et al. 2014) had sufficiently different coverage
properties from the other two (CR = 0.5×, CF = 12.5× for each
lane), which were provided to us much later after the protocol
had been extensively optimized for whole-genome haplotyping.
Eachwell of themore recent libraries also contained a significantly
higher fraction of the genome than the original library (3.4% ver-
sus 1.6%).

By applying RFA to these three lanes, we recovered an addi-
tional 50,314 variants (35,092 heterozygous) over those found us-
ing baseline short-read alignments within the 171 Mb of highly
repeated sequences. We validated these recovered variants against
three different sources of long-read sequencing data available for

NA12878 (Table 4; see Supplemental
Material for validation details):

1. A separate whole-genome sample that
had been sequenced with high cover-
age assembled Illumina TruSeq syn-
thetic long reads (CR = 50×, CF = 29×;
Genomes Moleculo NA12878, 2014,
op. cit.), whichwe aligned to the refer-
ence using BWA-MEM (Li 2013). The
long reads provided sufficient cover-
age to directly validate 33,984 of our
recovered SNV calls, with a validation
rateof 99.5%forourhomozygous calls
and 92.0% for our heterozygous calls.

2. A set of BACs targeting large high-
identity duplications in 15q13.3 that
had been sequenced with PacBio
(Antonacci et al. 2014). We used
BWA-MEM to align the assembled
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Figure 3. Histograms of simulation results across 1000 wells. Each point in the histogram represents
the result of a single simulated well. (A) All reads. (B) Only reads that were multimapped in the abbrevi-
ated reference. RFA confidentlymaps an additional 2.9% (out of 3.2% fromOracle) of the total reads over
the Baseline approach, and achieves 92% of the Oracle performance.
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BACs to the reference, and validated 301 of our recovered SNV
calls overlapping the aligned regions. Of the variants that we
identified within these regions, 97.6% of our homozygous calls
and 53.1% of our heterozygous calls were validated. A valida-
tion rate of roughly ∼50% for heterozygous calls is expected
since these clones are known to originate from a single haplo-
type in these regions.

3. A set of 103 fosmids that had been randomly selected across the
whole genome (Weisenfeld et al. 2014) and sequenced with
PacBio. We used BWA-MEM to align the assembled fosmids to
the reference and validated 127 variants. Of the variants that
we identified within the regions overlapped by these fosmids,
100% of our homozygous calls and 80% of our heterozygous
calls were validated.

Invasive ductal carcinoma sample

We then applied RFA to high coverage sequence data obtained
from a fresh frozen sample of a grade 3, ERBB2 amplified, estrogen
receptor (ER) negative invasive ductal carcinoma (IDC). Eight
Moleculo libraries of total long fragment coverageCF = 44×were se-
quenced at CR = 1.8× to produce read clouds with a total short-read
coverage of C = 78.5×. The high sequence coverage in this IDC
sample allowed us to discover a total of 3,286,470 SNVs. Of these
variants, 197,529 (6%) were found in the RFA alignments only
and not in the baseline, representing a significant, previously hid-
den fraction of variation. We randomly selected a subset of the
RFA-only variants within the 171 Mb of inaccessible sequence
that was amenable tomultiplex PCR validation. Of 346 submitted,
323 (93.4%) were validated as displaying an alternate allele fre-
quency (AAF) of at least 0.1 (see Supplemental Material for valida-
tion details). Although these validated variants required at least
one unique primer (up to onemismatch), and therefore are in prin-
ciple biased to be within repeat regions with at least one unique
nucleotide in range of the amplicon that distinguishes the copies,
they provide additional support that matches our variant discov-
ery accuracy measured in NA12878.

We determined the placement of our discovered variants in
the IDC sample within each annotation category across the whole
genome (Fig. 4). A comparison of the placement of our SNVs in the
IDC sample against known, high sequence-identity segmental du-
plications indicates that a significant portion lie within dense
stretches of recovered low copy repeats. We further examined
the placement of the identified SNVs across all repeated sequence
classes and found that 116,173 (59%) lie within segmental dup-

lications and 16,521 (8%) lie within gene regions, with the rest re-
siding within lower complexity elements (Table 5). We examined
both the set of variants that were filtered (by the GATK pipeline)
from the baseline run and recovered in the RFA run, as well as
the set of variants which were unique to just the RFA run. Thema-
jority of variants (55%) were unique to RFA and showed no signifi-
cant signal in the original baseline short-read alignments.

RFA is able to confidently align reads to 171 Mb of the hu-
man genome previously inaccessible to short-read technologies.
Validation with assembled synthetic long reads, PacBio assem-
bled clones, as well as PCR and deep targeted sequencing confirm
that these alignments can be used for accurate nucleotide-level
variant discovery. Examination of both alignments and SNVs
in the IDC sample indicates that RFA enables variant discovery
across all classes of repeated sequence, including genes, high
copy repetitive elements, and high sequence identity segmental
duplications.

Discussion
In this work, we demonstrate the ability of RFA to leverage read
clouds to accurately map short reads in 171 Mb of the human ge-
nome that is inaccessible to variant calling using short reads. Our
method enables the use of the TruSeq synthetic long-read protocol
in a cost-effective, read cloud setting, in which each longmolecule
is covered lightly with reads (CR≤ 2×) rather than requiring long
molecules to be assembled into synthetic long reads through
deep sequencing (CR = 50×). Using a probabilistic approach, we
jointly map all reads of a well to the reference genome to produce
confident uniquemappings that subsequently enable accurate dis-
covery of novel nucleotide variation in this previously dark por-
tion of the human genome.

Our approach models the features of a given synthetic long-
read protocol in P(M). For TruSeq read clouds, we chose to de-
compose and learn this function with empirical distributions,

Table 2. Gene type breakdown in recovered regions

Type Count Enrichment P-value

IG-V gene 50 + 2.44 × 10−15

Pseudogene 1612 + 2.44 × 10−15

miRNA 399 + 2.44 × 10−15

IG-D gene 37 + 2.44 × 10−15

IG-V pseudogene 49 + 7.33 × 10−15

IG-J gene 7 + 2.74 × 10−3

IG-C gene 4 +
IG-J pseudogene 2 +
Processed transcript 45 +
Polymorphic pseudogene 5 +
TR-J gene 6 +
IG-C pseudogene 1 +
3′ overlapping ncRNA 1 +
Protein coding 825 − 2.99 × 10−67

Antisense 219 − 1.45 × 10−16

snoRNA 48 − 2.39 × 10−8

Sense intronic 16 − 6.36 × 10−8

snRNA 89 − 4.02 × 10−4

Sense overlapping 4 − 2.98 × 10−2

rRNA 23 −
Misc RNA 115 −
lincRNA 457 −

Type of the 4510 genes with >50% of the length covered by recovered
alignments. Corresponding enrichment (+) and depletion (−) are shown
with only significant P-values shown here.

Table 1. Placement of confident alignments within previously inac-
cessible 171 Mb (6% of GRCh37) by element class

Element class Frequency (%) Illuminated (%)

All 100.0 90.6
Annotated 88.4 90.5
Segdup 43.4 93.8
LINE 35.2 88.3
SINE 14.2 92.7
Gene 7.0 95.5
LTR 6.3 92.3
Simple repeat 4.6 85.9
Satellite 2.3 88.1
Low complexity 1.6 89.0

Frequency is with respect to only previously inaccessible regions and
percent illuminated is the fraction of that originally ambiguous class
which was correctly and confidently aligned to in simulation.
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but replacing it would allow our approach to be readily adapted to
other synthetic long read technologies.

Although we provide proof of concept of our method for
discovering copy-specific SNVs on a whole-genome human sam-
ple, there are numerous additional potential applications of align-
ing read clouds. In future work, our improved alignments can be
leveraged to discover other types of variation, including indels
and larger structural rearrangements present in these regions.
Our preliminary analyses of the recovered alignments in the hu-
man genome also suggest a copy-rich structure that has yet to be
resolved accurately beyond illuminating SNV variation.

Our approach can be used to resolve ambiguity in complex re-
gions of high sequence identity. It could be useful in resolving am-
biguity in homologous regions, such as MCS and LRC, for which
the updated GRCh38 human reference genome contains multiple
alternative haplotype paths (Church et al. 2011). Aligning with
RFA may enable determination of the correct haplotype paths of
these variable regions. Our approach may also prove useful for
subspecies discovery and quantification in metagenomic samples
for which previous work had much higher sequencing require-
ments using TruSeq-assembled synthetic long reads (Sharon et al.
2015). There has beenpreviouswork to leverage PacBio sequencing
to accurately resolve RNA transcripts (Sharon et al. 2013). With
some modeling extensions, RFA can potentially be used to align
directly to an available transcriptome (of which many transcripts
will have high sequence identity) or for discovery of novel tran-
scripts with previously unknown alternative splicing sites.

Our current method has several limitations. First, alignment
generation with standard short-read aligners limits our method’s
ability to fully illuminate high copy-number elements because
theymay not generate any concordant paired alignments for reads
originating from high-copy regions. If the true candidate align-
ment for a particular read is not produced by short-read alignment
during pass2, then ourmethodwill be unable to find the truemap-
ping for that read. However, our approach naturally lowers the
quality scores for alignments in high-copy regions such that they
do not affect further analyses. Second, although our inference pro-

cedure performedwell in practice, itmaybenefit froman improved
proposal distribution to explore the state space of possible align-
ment configurations more effectively and further close the gap
with respect to Oracle performance. Finally, breaking the indepen-
dence assumption to allow variant information to be shared across
wells may improve variant discovery accuracy and recall.

Of the 130.5 Mb that are identified as high sequence identity
segmental duplications (Bailey et al. 2002), a significant portion is
currentlyhiddenfromshort-readtechnologies,andtheeffectofvar-
iation in these regions is largelyunknown.High-identitysegmental
duplications are highly variable between individuals, and copy
number variants (CNVs) within these regions are strongly correlat-
edwith increased sequence identity (Redon et al. 2006). Nonallelic
homologous recombination between LCRs as well as Alu repetitive
elements can result in a variety of balanced and unbalanced struc-
tural alteration events (Redon et al. 2006; Sasaki et al. 2010; Ou
et al. 2011). These regions are enriched for transcript content, and
a subset of these regions consists of multicopy genes also known
to vary widely in copy number between populations and individu-
als (Sudmant et al. 2010). Illumination of these highly dynamic re-
gions will enable discovery of variation across individuals, and
ultimately, functional annotation and phenotype association.

Methods
In order to leverage read clouds for accurate read alignment, we
model the long read generative process to capture the dependen-
cies between the resulting short reads through the hidden long
fragments. Using a standard short-read aligner to provide seeded
candidate long molecules and short-read alignments, we are
then able to reduce the problem of finding optimal alignments
to optimizing over an MRF. We first define our model and our ob-
jective function and then show howwe can use this framework to
obtain alignments and their respective mapping quality scores.

Definitions
For wells W = {1,2,… ,W}, we set up the following system
to describe the long read process. Each w∈W contains a set of
read fragments Rw = {Rwn|n = 1,2,… ,Nw}. Each read fragment,
Rwn, can potentially have multiple alignments, and we denote
Awn = {awnk|k = 1,2,… ,Kwn} as the set of its possible alignments
with respect to the reference genome. We incorporate our knowl-
edge of the synthetic long-read process bymodeling the set of orig-
inal long molecules Mw = {Mwi|i = 1,2,… ,Iw} that generated the
short reads.

For each wellw, the process can be described by the following
(w is omitted for clarity):

Table 3. Gene family breakdown in recovered regions

Family Count Enrichment P-value

ZNF 722 + 9.79 × 10−12

SLC 456 + 2.09 × 10−9

endogenous ligands 235 + 7.67 × 10−6

CD 388 + 1.44 × 10−5

I-set domain containing 161 + 1.58 × 10−4

BTBD 134 + 1.63 × 10−4

WDR 262 + 6.17 × 10−4

OR2 113 + 1.73 × 10−3

OR5 112 + 1.93 × 10−3

RNF 274 + 3.29 × 10−3

EF-hand 225 + 3.60 × 10−3

PLEKH 207 + 3.99 × 10−3

TTC 112 + 2.77 × 10−2

RBM 213 + 3.74 × 10−2

ANKRD 242 + 4.05 × 10−2

V-set domain containing 163 + 4.43 × 10−2

tRNA 612 − 0.0
scRNA 866 − 5.15 × 10−55

VN1R 112 − 4.00 × 10−18

snRNA 67 − 2.01 × 10−14

RPL 243 − 7.89 × 10−13

VN2R 20 − 4.74 × 10−6

rRNA 34 − 1.34 × 10−2

Families with enrichment and depletion are shown.

Table 4. Validation results of our NA12878 SNVs

Validation
set

Overlapping
SNVs

Homozygous
(accuracy %)

Heterozygous
(accuracy %)

TruSeq SLR 33984 9651 (99.5%) 24333 (92.0%)
15q13.3

PacBio
BACs

301 126 (97.6%) 175 (53.1%)

103 PacBio
fosmids

127 77 (100.0%) 50 (80%)

Validation rates of our SNVs that overlap long sequencing reads from
high coverage TruSeq-assembled synthetic long reads (SLR), PacBio-as-
sembled BACs targeting high identity duplications in 15q13.3, and 103
PacBio-assembled fosmids randomly selected across the whole genome.
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1. A set of hidden random vectors denoting long molecules that
generated the short reads:

M = {Mc|c = 1,2, . . . ,C}.

To describe Mc, we feature it as (Lc, Xc, λc, Bc, Sc, Ec). Lc is the
aligned position in the reference; Xc represents the hidden se-

quence of the molecule; and Sc is the size of the molecule. λc
controls the short-read emission random process. Bc captures
the presence of the end-markers and can be stored as a con-
ditional probability table (CPT). Bc, Sc, and λc can all interact
depending on the particular long-read protocol, so we model
them jointly as P(Bc, Sc, λc). For modeling convenience, Ec
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Figure 4. Whole-genome SNV calling on the IDC sample. (A) Comparison of the initial baseline short-read alignments of all the wells merged together
with four wells aligned with RFA (from two distinct haplotypes), in a region overlapping the FCGR1C gene. (B) Placement of recovered SNVs within the
surrounding 300-kbp region. (C ) Density of recovered SNVs throughout the whole genome (bottom track), by chromosome, compared to density of seg-
mental duplications (top track). Long clustered regions of recovered SNVs coincide with dense regions of annotated segmental duplications.
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denotes whether this source molecule existed in this well, and
Ec∼ Ber(pe).

2. A set of partially observed random vectors denoting read frag-
ments:

R = {Rn|n = 1,2, . . . ,N}.

We represent Rn as (on, An) where on is the observed information
of the read such as nucleotide sequence and base quality scores,
and An is the hidden alignment and captures the differences be-
tween the reference and the read for this particular alignment.

The distribution over the read fragments, over which we seek
to optimize, can be described by

P(R) =
∑

M
P(M,R), (2)

where the sum is over all possible hidden long fragment
configurations.

Long-read alignment seeding
Although the original long molecules themselves are completely
latent, we can predetermine a set of partially observed candidate
long molecules

{Mc = (Lc = lc,Xc,lc,Bc, Sc = sc,Ec)|c = 1,2, . . . ,C}

as follows (Fig. 5). Reads are aligned to the full hg19 reference
(pass1) using a short-read aligner allowing at most one alignment
per read. We pass through the resulting alignments and use a heu-
ristic set of rules to detect candidate clouds corresponding to clus-
ters of reads.We group reads that arewithin 3.5 kbp of one another
into the same cluster and require a cluster to have a minimum of
six reads to constitute a candidate cloud.We adopt a simple heuris-
tic to leverage the TruSeq long-fragment end-marker information
to split a candidate cloud in two in the cases in which two long
fragments happen to be within 3.5 kbp of one another (without
mixing overlap) and would otherwise be clustered by our simple
rule above. The choice of 3.5 kbp as the distance between reads
was made using training simulations to minimize the number of
superfluous candidate clouds (not representing true sampled
long fragments) while also minimizing false negative clouds so
that true candidates are not missed. After candidate cloud calling,
we then create an abbreviated reference containing a separate con-
tig for each candidate long molecule. All reads are then realigned

to this abbreviated reference (pass2) allowing multiple candidates
per read.

The resulting alignments serve as seeded domains An for each
read Rn. Definition of the abbreviated reference helps in filtering
spurious alignments to distant homolog sequences, which should
not be considered as potential source molecules. In practice, we
found that a lenient threshold for calling candidate clouds in
pass1 was sufficient to retain nearly all the true candidate clouds
containing ambiguous reads.

Read graph construction
In order to perform inference, we make the following simplifying
assumptions:

1. The underlying sample sequence in one well does not provide
any information about the underlying sequence in other wells
such that

P(R) =
∏

w
P(Rw).

2. Within each well, the long molecules do not overlap in the
same genomic region in the reference genome.

The process to generate read clouds in one well (dilution,
shear into short fragments, and barcoding) is unlikely to affect
the observed reads in any other well. However, since the wells
share the same underlying germline genome, the observed short
reads in each well are actually not independent and interact
through the unobserved underlying sample sequence. Although
our first assumption in principle limits the ability of our model
to leverage all available information, it is a significant simplifica-
tion that allows us to efficiently perform alignment on each well
separately. Regarding the second assumption, there is actually a
nontrivial chance two fragments sample overlapping genomic co-
ordinates in a single well, equal to the well genome coverage,
which was ∼2% in our samples. However, the end-markers from
TruSeq allow us to detectmost of these collisions when they do oc-
cur. We estimated the end-marker efficiency for our samples to be
p = 0.77; assuming independence of the end-markers of two over-
lapping fragments allows us to detect 1− p2 = 95% of collisions.
There is an additional, subtle assumption here: In order for frag-
ments to be nonoverlapping from one another, they would
have to be sampled from a nonuniform distribution such as the
“parking process” (Krapivsky 1992). However, when the total
fragment length is small compared to the total target genome
length, the uniform distribution of sampled fragments (Lander
andWaterman 1988) is a good approximation of the parking pro-
cess (Batzoglou et al. 1999). All together, we approximate the long
fragments as being nonoverlapping, but otherwise independently
drawn, and decompose read assignment scores by candidate long
molecules for tractable computation

P(Mw) ≈
∏

c
P(Mwc).

The assumptions above allow us to decompose the global
probabilistic function in Equation 2 to

P(R) =
∏

c

∑

Mc

P(Mc)P(Rc|Mc), (3)

where c indexes over clouds, and Rn∈Rc if there is at least one
alignment in An within the coordinate range [lc,lc + sc). The sum
overMc is over all possible hidden values of the domain of the fea-
tures defined in the previous section. This results in a Markov
RandomField (MRF) with each longmolecule inducing a potential
function ϕc(Rc) of the form above [wc(Rc) =

∑
Mc

P(Mc)P(Rc|Mc)] such

Table 5. Placement of SNVs from the IDC sample within previously
inaccessible 171 Mb (6% of GRCh37) by element class

Element class
Recovered SNVs
(heterozygous)

Unique SNVs
(heterozygous)

All 89,568 (49,184) 107,961 (82,113)
Annotated 86,889 (47,308) 105,407 (80,237)
Segdup 41,050 (27,105) 75,123 (57,822)
LINE 36,375 (17,825) 31,309 (24,404)
SINE 15,383 (6992) 17,090 (12,516)
LTR 7816 (4405) 11,010 (8256)
Gene 5817 (3831) 10,704 (8485)
Simple repeat 1759 (916) 3112 (2143)
Satellite 4055 (2754) 2222 (1789)
Low complexity 380 (242) 844 (632)

The whole-genome SNV numbers are from our high coverage IDC
sample and were obtained using the same criteria as in validation.
Recovered SNVs were present and filtered in the original Bowtie 2 run
but predicted in the RFA run. Unique SNVs are exclusive to just the
RFA run.
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that the distribution of read assignments can be represented as

P(R) = 1
Z

∏

c
wc(Rc).

For a particular read assignment,Rc = (oc, ac), Lc, Bc, Sc, and Ec
can be trivially inferred to result in only one significant value in
each of their domains (shown as constants below). To compute
the desired potential value, P(Rc), we still have to integrate or
sum over the domain of λc and Xc. Our prior of long molecule fea-
tures decomposes as

P(Mc) = P(Lc = lc,Xc,lc,Bc,Sc = sc,Ec = ec)

= P(Ec = ec)P(Bc = bc,Sc = sc,lc|Ec)P(Lc = lc|Ec)
∏

Xl[Xc

P(Xc |Ec)

(4)

Ec is a binary random variable, which is 1 if any reads are assigned
to Mc and 0 otherwise. Note that P(Lc, Bc, Sc, λc, Xc|Ec = 0) = 1. P(Xl|
Ec = 1)∼Cat(θl) captures our belief of the SNP mutation rate at
position l in the reference genome (due to germline plus somatic
variation). In our implementation, we estimated a shared parame-
ter by determining the germline SNP rate at unique regions in
the genome. We chose P(Lc|Ec = 1) to be uniform, but the bias of
a particular protocol to sample certain long fragments over others
could be captured in this function. Decomposition of the prior as
in Equation 4 allows us to compute the potential ϕc(Rc) efficiently
in linear time by variable elimination of Xc and λc.

Our approximate inference procedure relied on the ability
to compute the score of an updated assignment efficiently using
the decomposition across candidate long molecules in Equation
3 and is explained in the Supplemental Section MAP Inference
Procedure. Although we obtained good results by decoupling the
wells, this assumption can be loosened to allow interaction be-
tween wells in order to share information and improve perfor-
mance. Each well has information about the set of underlying
variants X, but contains a different set of observations through
its subset of reads. Allowing wells to share their belief about X
would affect the joint alignment and in principlemay result in im-
proved performance. Although our assumption that long frag-
ments in each well do not overlap in genomic coordinates was
useful in deriving our model, it is often not true in practice.
Fortunately, the presence of the end-marker short reads in
TruSeq sequencing allowed us to detect most of the cases when
sampled long fragments overlapped. The respective reads were ex-
cluded from our analysis since we do not have the ability to tell
from which long fragment the short reads originated in the case
of an overlap.

Query computation

Read quality scores
We compute maximum a posteriori (MAP) read alignments (see
Supplemental Material for details) and infer quality scores for the
alignments as follows. We assume that once the MAP assignment
converges, reads only have local interactions such that

P(Rn) = P(Rn|Rl− = rMAP
l− ),

where Rl− denotes the set of reads which do not overlap Rn in the
identified MAP assignment. We can then compute

P(Rn|Rl−) =
∑

Rl−n

P(Rl|Rl−)

=
∑

Rl−n

∑

X
P(Rl,X|Rl−)

=
∑

Rl−n

∑

X
P(Rl|X,Rl−)P(X|Rl−),

whereRl−n denotesRl excluding Rn; andX is the union of sequence
at all the potential locationsRl could bemapped to. The small sizes
of both Rl−n and X allow this quantity to be computed efficiently.
The computed P(Rn|Rl−) can then be converted to aMAPQ score for
that read.

With our method, alignments converge in the MAP assign-
ment such that certain candidate long molecules are empty, and
the corresponding candidate alignments within these coordinates
can be eliminated from the domains An. If the resulting domains
have only one alignment active, as is often the case for low copy
repeats, then the quality score will be high. However, the quality
score for a recovered alignment will be lowered if it falls in ele-
ments that are repeated with high sequence identity within the re-
sulting active long molecules, in which cases P(Rn|Rl−) will be
naturally lowered.

Cloud quality scores
For each cloud, we can directly compute P(Rc) =

∑
Mc

P(Mc)P(Rc|Mc)

for the identified MAP assignment by variable elimination as de-
scribed in the previous section. This quantity in log-space is
directly proportional to the number of variants predicted in a
long fragment for a given assignment, Rc. Low-quality long mole-
culesmay correspond to novel copynumber variants in the sample
that are not present in the reference and whose sequence identity
with the reference homolog where they map is unusually low. We
exclude short reads within clouds with low quality scores from our

hg19.fa

abbrev_cloud.fa
(( (((((((( (((((((( ((

well.fastq

(( (((((((( (((((((( ((

Pass 1

Pass 2

Figure 5. Abbreviated reference framework. The framework for generating putative long reads and associated short-read alignments to these segments:
(1) Reads are aligned to hg19 atmost once in pass1; (2) putative long read segments are identified and spliced together to create an abbreviated reference;
and (3) reads are aligned again in pass2 to this abbreviated reference allowing multiple mappings.
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variant calling pipeline. A pooling strategy that collects all such
read clouds to assemble additional potential copy number variants
in the target genome is an interesting subject for future work.

Our read quality score, P(Rn|Rl− = rMAP
l− ), does not capture

cases in which the alignment may be unique within an active
long molecule, but all the reads of that molecule could map near-
ly equally well to an inactive long molecule. We approximated
P(Ec|Rc− = rMAP

c− ) (which cannot be computed exactly due to
the size of Rc), and chose an appropriate cutoff using training
simulations for excluding alignments in order to minimize error.
We can approximate it effectively by identifying the set of assign-
ments to inactive clouds {rc1 , . . . , rck }, computing P(Xc|rc) for each
one, and then renormalizing. This is an inexpensive way to iden-
tify the peaks of the distribution since upon convergence, the as-
sumption is that interactions between reads of different long
molecules are mostly decoupled. The result can be used to ex-
clude long molecules for which all the member read fragments
can map equally well in another source molecule, c′, thus making
them indistinguishable.

Simulations of read clouds
We used a nonparametric approach in order to simulate read
clouds and capture biases intrinsic to the sequencing process (see
Supplemental Fig. 1). We first aligned all the wells from our IDC
sample and generated candidate clouds using the same criteria de-
scribed in pass1. We removed outlier clouds in regions with low
mappability (corresponding to repeats) or where we observed un-
usually high coverage likely due to copy number variants. The re-
maining set of read cloudswas assumed to be representative of true
sequenced read clouds that are present across the whole genome.
For each read cloud in this set, we created a stencil of the short-
read positions relative to the start of the cloud to be used as a
“cookie cutter” for generating short reads in a simulated read
cloud. In order to simulate base substitution errors in reads, we
fit a first-order model of the read bases and base quality scores
from our sequenced sample. We introduced a substitution error
with probability proportional to the simulated base quality score.
To simulate reads from a well, we choose a location uniformly at
random in the reference and draw a stencil that has not yet been
used in order to create a sampled long fragment.

We repeat the process until the well contains the expected
genome coverage (2% in our samples). The use of this empirical
simulationmethodology, rather than use of amodel-based simula-
tion, enables us to more accurately capture intrinsic biases present
in read-cloud sequencing and to better estimate the true accuracy
of our alignment approach. Still, we recognize that this simulation
strategy does not capture any sequence-specific biases of the read-
cloud and sequencing protocols.

TruSeq instantiation
To align short reads to the reference, we chose to use Bowtie 2
(Langmead and Salzberg 2012) for its high efficiency and accuracy
and for its ability to outputmultiple candidate alignments for each
read. We restricted the number of alignments for each read to be
15. Reads with possiblymore alignments were unlikely to be infor-
mative in the placement of other reads.

We found that the distributions of Bc, Sc, and λc for TruSeq
read clouds were difficult to parameterize. The read-cloud size
and density varied greatly conditioned on the presence of the
end markers, so we factorized P(Bc,Sc,λc) as P(Bc)P(Sc,λc|Bc). These
functions were estimated with Kernel Density Estimates (KDEs)
on features extracted from the valid clouds described in the simu-
lations section.

Implementation and availability
RFA is a Python package that leverages the short-read alig-
ner Bowtie 2. It is open source and freely available at http://
readclouds.stanford.edu and in the Supplemental Material. To
align a single lane of sequenced read clouds, a subset of the wells
are aligned using the default Bowtie 2 settings, and features of
uniquely mapped clouds are extracted to learn the cloud model
P(M). To achieve practical runtimes on large genomes, our imple-
mentation required the use of a compute cluster to parallelize
alignment across wells. Each well is aligned in the following
main steps: (1) Align all reads to the whole reference once; (2)
determine abbreviated reference and align all reads to this abbrevi-
ated reference allowing multiple candidates; (3) build in memory
structures and the read MRF graph; (4) perform MAP inference to
determine optimal alignments; and (5) compute alignment quali-
ty scores and generate the final alignment files. For the first lane of
NA12878 sequencing (CR = 1.5×, CF = 6.2×), for which we initially
designed our implementation, steps 1–5 took 40, 76, 57, 29, and 49
CPU hours, respectively, across all 384 wells. Our method requires
about 6× more total CPU time than generating baseline align-
ments (step 1). In future software releases, steps 1–3 may be folded
into a single step and further optimized, and steps 3–4 may be im-
plemented in a compiled language.

Data access
All raw sequence reads for the eight Illumina TruSeq libraries for
the IDC sample as well as the three libraries for NA12878 have
been submitted to NCBI BioProject (http://www.ncbi.nlm.nih.
gov/bioproject/) under accession number PRJNA287848.
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