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Abstract

Background: All cells in an individual are related to one another by a bifurcating lineage tree, in which each node
is an ancestral cell that divided into two, each branch connects two nodes, and the root is the zygote. When a
somatic mutation occurs in an ancestral cell, all its descendants carry the mutation, which can then serve as a
lineage marker for the phylogenetic reconstruction of tumor progression. Using this concept, we investigate cell
lineage relationships and genetic heterogeneity of pre-invasive neoplasias compared to invasive carcinomas.

Methods: We deeply sequenced over a thousand phylogenetically informative somatic variants in 66
morphologically independent samples from six patients that represent a spectrum of normal, early neoplasia,
carcinoma in situ, and invasive carcinoma. For each patient, we obtained a highly resolved lineage tree that
establishes the phylogenetic relationships among the pre-invasive lesions and with the invasive carcinoma.

Results: The trees reveal lineage heterogeneity of pre-invasive lesions, both within the same lesion, and between
histologically similar ones. On the basis of the lineage trees, we identified a large number of independent
recurrences of PIK3CA H1047 mutations in separate lesions in four of the six patients, often separate from the
diagnostic carcinoma.

Conclusions: Our analyses demonstrate that multi-sample phylogenetic inference provides insights on the origin of
driver mutations, lineage heterogeneity of neoplastic proliferations, and the relationship of genomically aberrant
neoplasias with the primary tumors. PIK3CA driver mutations may be comparatively benign inducers of cellular
proliferation.
Background
Cancer evolution is driven by the accumulation of som-
atic mutations that confer fitness advantages to the
tumor cells, enabling them to evade homeostatic mecha-
nisms and to proliferate. Leveraging advancements in
next-generation sequencing technologies, large-scale ef-
forts have cataloged the somatic mutational events driv-
ing the progression of cancer [1-3]. These efforts, as well
as studies sampling multiple different locations in the
same tumor [4-6], have revealed that the tumor mass it-
self is genetically heterogeneous [7]. At a single cell level,
studies reveal substantial tumor heterogeneity [8].
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To understand the foundations of tumor heterogen-
eity, and the dynamics of cell growth in the tumor and
related proliferative lesions, it is important to recognize
that all cells in our somas, including those of cancers,
are related to one another by a bifurcating lineage tree
whose root is the zygote. In that tree, each node is an
ancestral cell that divided into two, and each branch
connecting two nodes represents at least one cell cycle
(though usually many more than one). When a somatic
mutation occurs in an ancestral cell, all its descendants
carry the mutation, which can then serve as a lineage
marker if assayed in multiple samples from the same in-
dividual. Phylogenetic reconstruction of tumor progres-
sion, with the goal of deriving an evolutionary tree of
the tumor and related tissue samples, can then be per-
formed on the basis of the presence of the somatic mu-
tations across the diversity of samples from that patient.
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Most genetic and epigenetic studies of clonal hetero-
geneity have focused on the primary invasive and meta-
static stages [9-13]. By contrast, there have been few
genetic analyses of significant depth that examine the
spectrum of the pre-invasive compartment, represented
by lesions ranging from hyperplasias to carcinoma in
situ. The pre-invasive compartment is becoming increas-
ingly clinically significant as cancer screening programs
have led to a tremendous rise in the diagnosis of lesions
in this category [14,15]. Noninvasive neoplastic prolifera-
tions of breast tissue, including hyperplasias and columnar
cell lesions, represent a range of phenotypic intermediates,
and are associated with mildly increased risk of carcin-
oma. In a prior study we established that a subset of these
neoplasms were closely related to the concurrent invasive
carcinoma [16]; those neoplasms carried a significant mu-
tational burden and contained characteristic genomic
alterations such as chromosome amplifications. Other
lesions arose from much earlier ancestral cells and did
not exhibit a large mutational burden, nor chromosome
alterations.
For a better understanding of genetic heterogeneity of

pre-invasive lesions we performed targeted deep sequen-
cing of multiple samples from six breast cancer patients.
We characterized the evolution of the patients’ neoplas-
tic lesions and their phylogenetic relationships with the
diagnostic carcinoma. Building on a prior study in which
we deeply sequenced 31 somatic genomes of tumors,
neoplasias, and controls in six patients [16], we here ob-
tain much more accurate estimates of variant allele fre-
quencies (VAFs) of phylogenetically informative single
nucleotide variants (SNVs) in a much greater number of
samples, with emphasis on pre-invasive neoplasias. In
particular, we expanded the number of samples to 66, in-
cluding 18 carcinomas and 34 concurrent neoplasias.
From more than a thousand phylogenetically informative
SNVs (on average 181 per patient), we reconstructed
highly resolved trees that illuminate the history of clonal
expansion and cell-lineage heterogeneity of these cases,
as well as the occurrence of independent PIK3CA muta-
tions within the same patient.

Methods
Selection of archive neoplasias
The study was conducted under a waiver by the Stanford
IRB.
Six breast cancer patients with concurrent neoplastic

lesions (ranging from early neoplasia, carcinoma in situ,
and invasive carcinoma, as well as normal control) were
selected for a previous study [16]. In this study, we
added 38 mostly pre-invasive lesions and deeply se-
quenced all lesions (including the previous ones except
three of them in patient 1) for 1,185 PCR-targeted SNVs
(Additional file 1).
DNA isolation and library preparation
DNA was extracted from each sample using protocols
optimized for archival material. For samples of the dis-
covery set [16] we started with de-paraffinization of tis-
sue sections with xylene (50°C and two to three repeats
can increase the DNA yield), then cell lysis with Protein-
ase K (overnight at 50 to 56°C), followed by column-based
DNA purification Life Technologies, catalog number
AM1975 (Carlsbad, CA, US), or Qiagen, catalog num-
ber 56404 (Venlo, Limburg, US).
For the new samples of this study for which little tissue

(a single small core) was available, we performed the same
de-paraffinization and cell lysis as above. To maximize the
DNA recovery, we then removed proteins and other cell
debris by two precipitations. The first precipitation was
performed with Protein Precipitation Solution (Qiagen,
catalog number 8241679) to remove protein and cell deb-
ris. The second precipitation was performed with isopro-
panol Sigma, catalog number 19516 (St. Louis, MO, US))
and glycogen to pellet all DNA in the supernatant. After
being completely dissolved in 50 μl TE, DNA was further
purified with a Qiagen MinElute column (catalog number
28004) and eluted in 30 μl EB buffer.
We used either 10 ng genomic DNA purified from

each original sample or 2 ng DNA of each new sample.
For each patient, a random subset of SNVs from each
phylogenetic class from the discovery set, as well as the
SNVs of PIK3CA, were chosen for targeting. Libraries
for targeted sequencing were generated by multiplexed
PCR with primers containing Illumina adaptor sequences.
The multiple target-specific regions from each sample
were amplified by an initial PCR (98°C/1 minute; 25 cycles
of 98°C/10 s, 72°C/10 s, 65°C/1 minute, 60°C/8 minutes,
65°C/3 minutes, and 72°C/30 s; 72°C/5 minutes; hold at
4°C) with 50 nM of combined multiplex primers. PCR
products of the target size were isolated by gel purifica-
tion. A unique barcode was then added to each sample
by a second PCR using Illumina-compatible primers. All
barcoded samples from two or more patients were
pooled and sequenced with a single lane of HiSeq2000
to obtain high sequence coverage of the targeted SNVs
for the accurate estimation of their VAFs.

Primer design and variant allele frequency quantification
A custom pipeline for primer design was developed to ac-
commodate a multiplex PCR amplification strategy that
directly incorporates Illumina-compatible primers for sub-
sequent sequencing. Primers were designed in a way such
that 1) size of the target PCR amplicon was about 100 bp,
2) the target SNV was within approximately 40 bases of
the sequence start site, and 3) all primers for the same pa-
tient were compatible for multiplexing.
To generate primers for a given target SNV, Primer3

software [17,18] was used to produce sequences for up
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to 50 primer pairs with the following characteristics: 18
to 24 bp primer length, 100 to 160 bp length product
size, and a minimum of 4 bp distance between the muta-
tion site and either primer. Subsequent filtering steps re-
moved any primers that violated the following constraints:
maximum of 50 bp distance between the mutation and
one of the primers in a pair, unique gapless alignment of
both primers in a pair (as single reads) with tolerance of
up to one mismatch, unique alignment of primer pairs
via paired alignment with Bowtie 0.12.7 [19]. Illumina-
compatible adapters were then added to each primer pair.
In a final step, a single primer pair was selected for each
locus using a greedy algorithm that iteratively reduced
cross-dimerization scores among primers for all loci
intended for multiplex processing.
Reads were mapped to the human genome assembly

hg19 using the DNAnexus read mapper. Reads overlap-
ping each SNV position were extracted from the mapped
BAM files and the numbers of reads supporting the ref-
erence or alternative allele were counted. Because mul-
tiple oncogenic mutations have previously been reported
at PIK3CA HIS1047, reads supporting all four nucleo-
tides were counted at that position.

Single nucleotide variant statistics
Of the 1,185 SNVs that were tested, 7 gave fewer than a
total of 1,000 reads, which we denote as PCR failures.
Fifty-five SNVs turned out to have been false-positive
calls in the original study [16], a high rate because we
biased the selection of SNVs to be tested in this study
towards potentially interesting or ambiguous SNVs. Six-
teen were germline SNVs. Among 1,107 validated SNVs,
19 are in ambiguous phylogenetic classes. Thus, a total
of 1,088 SNVs or 11,474 data points were available for
treebuilding.

Treebuilding
Inspection of all 12,445 data points (the sum of all pa-
tients’ SNVs across all samples, excluding PCR failures)
revealed surprisingly clear separation between negatives
and positives (Additional file 2). We used a VAF of 0.02
as the initial default cutoff to separate negatives from
positives. This allowed construction of a simple presence-
absence vector for each SNV with one value (1 or 0)
for each sample in that patient. We here refer to the
presence-absence vector as the 'phylogenetic pattern'
or simply 'pattern'.
Our strategy for treebuilding, manually executed in Excel

with repeated detailed examinations of all data points, was
to first identify the robust phylogenetic classes. These con-
sist of patterns that are supported by more than one SNV,
and whose SNV VAF values across samples are consistent
with each other. This was intended to avoid overfitting the
tree on the basis of noisy SNVs, which would be especially
misleading when untrue mixed-lineage samples are in-
ferred. In rare instances (N = 4) we therefore allowed a
single SNV to constitute a robust class if the VAFs were
clearly positive and its inclusion would not generate an
additional mixed-lineage sample. Three SNVs had VAFs
in specific samples that were below 0.02 but were con-
sidered positive because all other values matched that
class well; similarly, nine SNVs had VAFs in specific
samples that were above 0.02 but were considered nega-
tive (Additional file 2). Including or excluding these
SNVs did not affect the trees.
We inferred the trees from the patterns with straight-

forward parsimony, with one simple modification that
would allow for the presence of mixed-lineage samples.
Phylogenetic patterns that ‘conflict’ in that they cause a
sample to not be unambiguously placed induce a 'dupli-
cation' of the sample such that the two copies can be
placed independently in the tree and are then joined for
display and interpretation. Five samples of the 66 total
were inferred to be derived from two lineages. No phylo-
genetic patterns conflicted with each other beyond these.
The contribution of VAFs from each mixed lineage
summed to match the average VAF of the ancestral lineage,
consistent with the presence of the mixed lineages.

Data access
The raw fastq sequence data from this study have been
submitted to NCBI [20] under BioProject identifier
PRJNA193652.

Results
Targeted deep sequencing of somatic SNVs in multiple
neoplastic samples from each patient
The assayed lesions included the morphologic categories
of breast neoplasias (apocrine metaplasia, usual ductal
hyperplasia, and columnar cell lesion (CCL)), hyperpla-
sias with atypia ('AH', atypical ductal hyperplasia and
'FEA', flat epithelial atypia), ductal carcinoma in situ
(DCIS), invasive ductal carcinoma (IDC), and metastasis.
From the original 12,383 somatic SNVs of the six pa-
tients, we picked 1,185 (ranging from 130 to 296 per pa-
tient) for deep targeted resequencing in order to obtain
highly accurate VAFs for building high-resolution lineage
trees of all samples from each patient. We randomly se-
lected subsets of SNVs from each branch of the original
trees to maximize the diversity of phylogenetic patterns
and therefore the expected resolution of the expanded
trees. In addition, we included SNVs that violated the
original trees, such as germline SNPs with dropouts in
some samples, genuine somatic SNVs that mark alterna-
tive lineages, and recurrent SNVs that arise independ-
ently multiple times in the same patient.
We designed, for each patient, a fully multiplexed

targeted PCR assay with each sample having a unique
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barcode, and sequenced the products with the Illumina
HiSeq platform. The number of reads per patient
ranged from >60 million to >283 million and the
resulting deep coverage allowed highly accurate VAF
estimates (Additional files 1 and 3). Background false
positive rates estimated from the large number of
SNVs absent from subsets of samples were well below
1 in 1,000, consistent with the rates of Illumina sequen-
cing errors. We found no evidence for PCR jackpots in
the distribution of sequencing errors, suggesting that the
sequencing libraries were prepared with sufficient starting
material to avoid these types of effects.
Separate tabulation of these data for each patient re-

sulted in a matrix of VAFs for each SNV (rows) in each
sample (columns) (Additional file 3). Of the 1,185 ampli-
cons, 7 did not generate sufficient numbers of reads (N
< 1,000; PCR failures) and were excluded from subse-
quent analysis (Additional file 1). For each patient, each
VAF matrix was converted to a presence/absence matrix
as previously described [16], where samples were called
positive for an SNV’s alternative allele if its frequency
was 0.02 or greater (Figure 1). Of the 1,178 PCR positive
assays, 16 had alternative alleles that were present in all
samples of the patient. These represent germline SNVs
that were false negatives in one or more samples in the
original study. Fifty-five assays did not have an alterna-
tive allele, representing false positives in the original
study. Most of these false negatives and false positives
are from groups that violate the original tree. Thus,
1,107 variants (93.4%) were bona fide somatic SNVs.
SNVs exhibiting similar patterns of presence/absence
among samples were grouped together into phylogenetic
classes. Nineteen SNVs (1.7%) were categorized as belong-
ing to ambiguous phylogenetic classes. The remaining
1,088 SNVs were categorized as belonging to unambigu-
ous classes from which trees were built.

Ancestral cell relationships revealed by highly resolved
phylogenetic trees
Applying parsimonious inference on the phylogenetically
informative classes, we obtained one tree per patient
(Figure 2) that is fully consistent and without conflicts
(with two SNVs being exceptions, discussed below). The
resolution of the branching order is high, with all trees
having mostly bifurcations (indicating unambiguous
branching) and only a few tri- and multifurcations (indi-
cating uncertainty in branching order). The multifurca-
tions are concentrated at the tops of the trees, where
there are no mutations to resolve branching order and
where the samples that do not have any of the assayed
somatic variants branch off the root node. In all five pa-
tients for whom we have contralateral samples, the left-
right cell division occurring in early embryonic develop-
ment appears near the root of the tree, with few mutations
able to distinguish between the contralateral and ipsilat-
eral lineages. In contrast, tumor evolution, characterized
by a larger number of cell divisions and higher mutation
rates, produces greater resolution in branching order to-
wards the leaves of the trees [21]. The trees from the dis-
covery set (from our original study, which was based on
whole-genome data with lower coverage and therefore less
confident VAF estimates [16]) are exactly represented as
strongly supported subtrees, highlighting the reproducibil-
ity and robustness of the data and the fidelity of somatic
mutations as lineage markers.
Most (N = 20) pre-invasive neoplastic lesions whose

histological characteristics are closest to that of normal
epithelial cells either have no common ancestors with
one another and branch off the root node, or have
shared common ancestors with other samples high in
the tree. Only one of these assayed neoplasias (in patient
2) has an aberrant genome [16] and a genetic relation-
ship with the concurrent carcinomas (Figure 2b). In the
four patients (patients 1, 2, 3, and 6) that had DCIS or
AH lesions, more recent ancestral cell divisions invari-
ably produced one daughter cell that would go on to
form the IDC and one that would produce the DCIS
and/or AH (Figure 2a-c,f ). Based on their relationships
with DCIS and IDC, AHs represent an advanced form of
pre-invasive lesion with a greater mutation burden than
the typical ductal hyperplasia or CCL.

Phylogenetic heterogeneity within pre-invasive samples
In contrast to trees produced from single cells or organ-
ismal phylogenetics, evolutionary inference on tumor
samples that contain many cells is complicated by the
potential presence of mixed-lineage samples. To identify
such phylogenetic heterogeneity, we identified SNV clas-
ses whose presence/absence patterns cannot be ex-
plained by a single tree. None of the DCISs or IDCs
came from a mixed lineage. This does not apply to the
potential presence of subclones within the IDC samples,
for which this study was not designed. Rather, our data
indicate that no DCISs or IDCs were composed of two
independent ancestral cell lineages, but that a substantial
majority of the material of all carcinomas originated
from a single ancestral cell. We cannot identify small
contributions of independent lineages, but the VAF dis-
tributions in the IDCs prove them to be minor if they
exist at all. By contrast, five non-carcinoma samples
from four patients (1, 2, 5, and 6; two CCLs and three
AHs) exhibited mixed-lineage origins (Figure 2a-b,e-f ).
Each is defined by two classes of SNVs whose presence/
absence patterns cannot be explained by a single tree.
Instead, after a period of common ancestry that is repre-
sented by ancestral SNVs present at high frequency,
there was a cell division that gave rise to two independ-
ent lineages, each with its own unique subtree, which



Figure 1 Variant allele frequencies from the six patients. Each SNV by sample combination is represented by a point, colored blue if it was
called present in a sample, or orange if it was called absent. The 0.02 VAF cutoff used to determine presence or absence for most variants is
shown as a dashed horizontal line. Means and standard deviations are shown, which are so close in the absent classes that they appear as a
single horizontal line.
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accumulated unique SNVs that distinguish the lineages
from each other. Progeny from those lineages prolifer-
ated in close proximity and with similar phenotypes,
eventually contributing almost equal numbers of cells
to the samples. Because the lineage-specific SNVs are
present in only about half of the lesional cells each, in
mutually exclusive subsets, their VAFs are about half of
the VAFs of ancestral SNVs carried by all cells of the
sample (Additional file 3), providing further confirm-
ation of their presence.

Within-patient recurrences of PIK3CA driver mutations
The only previously identified gene-specific driver
changes in our patients were the HER2 amplifications in



Figure 2 Lineage trees inferred from 1,088 SNVs from the six patients. Numbers in circles are the number of SNVs that arose in the branch
leading to an ancestral node (blue) or that are private to the sample (green). Con, contralateral; Ips, ipsilateral. Stars denote samples originating
from at least two lineages. For these samples, the estimated proportions of each lineage’s contribution is denoted by the sizes of the samples’
rectangles. Samples whose branches are drawn rightward at the top of the tree do not harbor any of the assayed SNVs.
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patient 6 and two missense mutations in PIK3CA in pa-
tients 1, 3, 4, and 5. Our highly refined trees provide an op-
portunity to ask about their origins relative to the cellular
ancestors that our trees have identified. In phylogenetic
terms, we asked in which branches of the tree, and thereby
how early or how late, these changes occurred. In the only
HER2-positive patient (patient 6) of our study, a roughly
4 MB amplification including the HER2 gene occurred in a
lineage ancestral to the last common ancestor of the DCIS,
FEA, and IDCs (Figure 2f, in the branch with 22 SNVs). On
that same branch, the majority of the aneuploidies in this
patient arose, followed by some additional aneuploidies and
point mutations in the ancestral lineage of the IDC [16].
The single origin of the HER2 amplification in patient

6 is in stark contrast to position 178,952,085 on chromo-
some 3, which encodes amino acid 1,047 in PIK3CA. An
A-to-G mutation, which causes the H1047R missense
Figure 3 Inferred origins of recurrent mutations and their VAFs. Samp
blue bars, VAF of PIK3CA H1047L. Green or blue circles on branches mark t
indicates that there may be additional events that we cannot resolve. Oran
101,160,839 on chromosome 11 in patient 3.
change, is present in four patients (1, 3, 4, and 5; Figure 3).
In addition, two of these patients also carry an A-to-T
change (H1047L). Consistent with previously reported fre-
quencies [22-25] these patients harbor this known driver
mutation at high VAFs that are in the range of most other
phylogenetically informative variants (Figure 3). However,
in each of the patients its presence/absence pattern across
the samples indicated multiple independent origins, given
the tree topologies. In patients 1, 3, and 4 it arose inde-
pendently both contralaterally and ipsilaterally. Ipsilater-
ally, where the trees are highly resolved due to the larger
number of samples, H1047R arose at least once in patient
1, at least three times in patient 3, twice in patient 4, and
at least three times in patient 5. In addition to H1047R,
H1047L occurred once in patient 1 and once in patient 3,
in both instances in a neoplasia that also carries H1047R
(Figure 3).
le color coding is as in Figure 2. Green bars, VAF of PIK3CA H1047R;
he origin of the indicated number of mutations, where a plus sign
ge bars and circles pertain to the T-to-C change in position
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Discussion
Pre-invasive neoplastic lesions are increasingly recognized
as being important clinically (in diagnostics) and scientif-
ically (for mechanistic insight into cancer evolution). We
address both aspects by performing phylogenetic inference
with somatic SNVs across the morphologic spectrum of
neoplastic progression from normal breast epithelium to
invasive breast cancer. We deep-sequenced 1,107 somatic
SNVs in 66 samples from six patients and reconstructed
the single most parsimonious evolutionary tree for each
patient. The trees reveal insights into three aspects of can-
cer evolution that are of future clinical relevance: phylo-
genetic relationships among the pre-invasive lesions and
with the IDCs, lineage heterogeneity of pre-invasive le-
sions, and recurrence of mutations in PIK3CA.

Phylogenetic relationships of neoplasias
Our trees cast the traditional concept of tumor progression
into a new light, in which the idea of ‘early’ neoplastic le-
sions ‘progressing’ to a tumor phenotype is refined on the
basis of cell lineage inference. Pre-invasive neoplastic le-
sions are not the direct precursors of invasive lesions but
independent clonal proliferations of an ancestral cell (or in
the case of mixed-lineage samples, a few ancestral cells),
just as the carcinomas are. By tracing the lineage from the
root of each tree to the IDC ancestor, a progression of the
cellular lineage from mildly to strongly proliferative and
eventually invasive phenotypes can be inferred.
The trees prove it to be a single cell lineage and not a

field of cells that ‘progress’. The single-cell lineage con-
cept is analogous to the germline, where many cells pro-
liferate into germ cells but only one eventually grows
into the organism. Here too, there is cell proliferation
during lineage evolution, but the ancestral nodes repre-
sent single cells revealed by clonal expansion of their
progeny. The ancestral lineages represent many cell divi-
sions, but the other daughter cells of these divisions did
not independently proliferate into visible lesions, or else
the tissue would have been a massive collection of pre-
invasive lesional material that would have been detected
much before formation of the diagnostic IDC.
The trees reveal that the clonal expansions of CCL-

like pre-invasive lesions begin earlier during lineage evo-
lution, and that (as expected) the rate of growth of such
lesions is slower than that of less differentiated lesions
or the tumor. Each AH or DCIS proliferates from an an-
cestral cell that has a higher mutation burden, and the
ancestral cells of the invasive primary tumors begin to
proliferate even later, and more quickly.

Mixed-lineage origins of subsets of pathologically
well-defined neoplasias
Two CCLs and three AHs, but none of the three DCIS, 15
IDC, or two metastatic samples, exhibited mixed-lineage
origins. There may, therefore, be considerable genetic
heterogeneity in some pre-invasive lesions that does not
necessarily correlate with nuclear atypia or proliferation
index of the sample. This suggests that genomic
characterization of pre-invasive lesions would add im-
portant information to the histological characterization
that is currently standard in diagnostics.
As yet unexplored mechanisms such as copy number

alterations determine the variance in VAFs and so we do
not yet know whether the sensitivity of our study limited
the detected number of mixed-lineage clones, or whether
our results are an accurate estimate of the typical number
of mixed-lineage clones in pathologically well-defined
samples. Due to Illumina sequencing error rates, a VAF
threshold of 0.02 was required to call an SNV positive in a
sample, and considering that most samples have an aver-
age of about 50% normal cell ‘contamination’, we likely
missed minor subpopulations. The frequency of lineage-
mixing within our set is roughly consistent with a Poisson
distribution of a mean rate of about 1 in 10, as 5 out of 66
samples exhibit mixed lineage origins. This suggests that
the number of ancestral lineages contributing to a patho-
logically defined neoplastic sample of about 1 cubic milli-
meter (roughly 106 cells) is usually one, rarely more, at
least in breast cancer.

Recurrence of PIK3CA mutations
On the basis of the trees we were able to show repeated
within-patient recurrence of two mutations, H1047R
and H1047L, in PIK3CA. The mutations frequently oc-
curred in pre-invasive neoplasias and were absent from
all invasive carcinoma samples in two out of four pa-
tients. Multiple independent origins of the mutations are
the best explanation for the observed patterns. Both mu-
tations’ VAFs are measured robustly with per-patient
high-quality sequence coverage over the position ranging
from 87,856 reads in patient 5 to 671,239 in patient 1.
The smallest number of reads in any one sample is
4,833. Across all negative samples, including all samples
in patients 2 and 6 which do not have H1047R or
H10147L at all, the absence of the mutations is well-
supported and not due to low read coverage or another
technical artifact. Rearranging the trees to force a single
origin of H1047R is impossible without causing a
massive conflict with all other phylogenetically inform-
ative SNVs. Alternatively to multiple independent origins
one might theoretically invoke ancestral presence of the
mutations and then multiple independent reversions to
the normal allele. However, it is difficult to envision how
a mutation that has been functionally linked to causing
proliferation (for example, [26]) and that recurs so fre-
quently in tumors (for example, [27,28]) would be se-
lected against so as to be completely lost in a large
number of samples (and billions of cells) from each
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patient. Also note that it is absent from the six normal
and lymph control samples and present at very low fre-
quency in only one normal sample (patient 1; Figure 3).
The VAFs of the H1047R mutation in many of the

pre-invasive lesions are consistent with all cells carrying
it, and therefore with it being the initial proliferative
driver mutation. However, it is curious that it is absent
from all IDC samples in patients 3 and 5 despite being
present in several pre-invasive neoplasias in those same
patients. This is consistent with previous studies that
have shown PIK3CA H1047R to be highly prevalent in
CCL [24,29,30]. In our prior study [29], we observed a
poor correlation of CCL mutational status with the sta-
tus of the accompanying carcinoma. In only 1 of 14
cases was a PIK3CA mutation present in both the pa-
tient match CCL and the concurrent carcinoma. A CCL
bearing a PIK3CA mutation was typically accompanied
by wild-type carcinoma, or carcinoma with a different
PIK3CA mutation (in 9 of 14 cases). Given the preva-
lence of PIK3CA mutations in benign proliferative le-
sions, its absence from some IDCs even in patients that
have it in other sites, and the only very slightly increased
risk of cancer associated with neoplastic lesions in gen-
eral and CCL in particular, it is worth considering
whether PIK3CA H1047R is really a driver of neoplasia
at this stage of cancer development or a comparatively
benign inducer of proliferation alone.
In summary, we use phylogenetic inference to identify

genetic and lineage heterogeneity in the pre-invasive
compartment of breast neoplasia, including stages of
hyperplasia. As this class of lesion may represent one of
the earliest morphologically identifiable entities in the
cancer progression pathway [16], our findings suggest
that detailed genomic characterization of lesions will re-
sult in their stratification into genomically normal versus
aberrant neoplasms, with clearly distinct choices for
treatment and monitoring as a result. In light of the fact
that genetic heterogeneity at this early stage may not
manifest as a histologically detectable phenotypic differ-
ence [31], we envision two scenarios where a genomic
multisample approach will be beneficial. One, if several
lesions were detected by high resolution imaging in a pa-
tient, characterizing biopsies from all or a large fraction
will be more representative and potentially reveal genetic
heterogeneity among them. Two, if only one general site
of lesion is found and a single biopsy is taken, detailed
histological characterization followed by multisample
analysis of histologically separated sub-lesions will also
reveal the degree of heterogeneity. In either scenario,
understanding the genetic and lineage heterogeneity
among the samples and having the chance to identify
those sites, if any, that have evolved a high mutation
burden will improve monitoring and treatment for that
specific patient.
Conclusions
We used multi-sample phylogenetic inference to provide
insights into the origin of driver mutations, the nature of
neoplastic proliferations, and the relationship of genomi-
cally aberrant neoplasias with primary tumors. Our
strategy was to use whole-genome sequencing of a lim-
ited number of samples to produce a discovery set of
SNVs, and then to build highly resolved phylogenetic
trees from a much-expanded sample set that did not
lend itself to whole-genome sequencing, using a max-
imally informative subset of SNVs. The degree of genetic
heterogeneity identified within the pre-invasive com-
partment suggests specific genomic approaches for can-
cer screening and early detection efforts. We show that
PIK3CA driver mutations may be comparatively benign
inducers of cellular proliferation.
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