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Molecular interactions between protein complexes and DNA

mediate essential gene-regulatory functions. Uncovering such

interactions by chromatin immunoprecipitation coupled with

massively parallel sequencing (ChIP-Seq) has recently become

the focus of intense interest. We here introduce quantitative

enrichment of sequence tags (QuEST), a powerful statistical

framework based on the kernel density estimation approach,

which uses ChIP-Seq data to determine positions where protein

complexes contact DNA. Using QuEST, we discovered several

thousand binding sites for the human transcription factors

SRF, GABP and NRSF at an average resolution of about 20 base

pairs. MEME motif-discovery tool–based analyses of the QuEST-

identified sequences revealed DNA binding by cofactors of SRF,

providing evidence that cofactor binding specificity can be

obtained from ChIP-Seq data. By combining QuEST analyses

with Gene Ontology (GO) annotations and expression data,

we illustrate how general functions of transcription factors

can be inferred.

Chromatin immunoprecipitation (ChIP) has become an important
assay for the genome-wide study of protein-DNA interactions and
gene regulation1–3. In a typical ChIP experiment, protein com-
plexes that contact DNA are cross-linked to their binding sites,
the chromatin is sheared into short fragments, and then the
specific DNA fraction that interacts with the protein of interest is
isolated by immunoprecipitation. A genome-wide readout of
the protein binding sites is produced either by hybridization of
the DNA pool to a tiling array (ChIP-chip4) or by end-sequencing
of millions of different DNA fragments (ChIP-Seq5–9). In higher
organisms, particularly mammals, ChIP-chip data tend to have
low resolution and are often quite noisy10, two shortcomings
that ChIP-Seq promises to surmount. As a consequence, ChIP-
chip is being rapidly displaced by ChIP-Seq in genome-
wide discovery of mammalian transcription factor binding
sites (TFBSs).

The goal of ChIP-Seq data analyses is to find those genomic
regions that are enriched in a pool of specifically precipitated DNA

fragments. Regions of high sequencing read density are referred to
as peaks. The output of software implementing peak-finding
methodology is a list of ‘peak calls’ that comprises the genomic
locations of sites inferred to be occupied by the protein. To date,
studies that have presented ChIP-Seq data5,6 used peak-finding
methodology that heuristically quantifies read density but does not
take full advantage of certain important properties of the data such
as the directionality of sequencing reads. The growing importance
of ChIP-Seq demands development of rigorous and transparent
statistical approaches that fully leverage the inherent advantages of
ChIP-Seq.

We here describe QuEST, a ChIP-Seq data analysis method that is
based on realistic statistical modeling of the ChIP-Seq experimental
approach. QuEST generates peak calls with substantial power and
resolution by leveraging key attributes of the sequencing data such
as directionality of reads and the size of fragments that were
sequenced (which, notably, is estimated from the data themselves
rather than provided by the user). QuEST achieves the desired
balance between sensitivity and specificity by calculating false-
discovery rates from controls that are routinely conducted as part
of ChIP experiments. Underlying QuEST’s statistical framework is
the kernel density estimation approach11, which facilitates aggrega-
tion of signal originating from densely packed sequencing reads at
the TFBSs, leading to statistically robust peak calls.

To demonstrate the power and resolution of analyses facilitated
by QuEST, we generated ChIP-Seq data for three functionally
different human transcriptional regulatory proteins that have
well-defined binding specificities and regulatory roles. Growth-
associated binding protein (GABP) and serum response factor
(SRF) are thought to function primarily as transcriptional activa-
tors12–18, and neuron-restrictive silencer factor (NRSF) is a tran-
scriptional repressor19,20. We applied QuEST to these data as part of
a larger workflow that also included MEME-based motif discovery
and, in the case of SRF, identification of cofactor motifs that were
indicative of cofactor interactions. Finally, we analyzed the ChIP-
Seq data together with microarray results and GO terms to describe
the function of the transcription factors.
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RESULTS
Analytical framework
QuEST requires data in the form of genome coordinates (‘tags’)
obtained from mapping several million sequencing reads to a
reference genome. Tags from forward and reverse reads cluster on
opposite sides of the TFBS (Fig. 1a) This is because sequencing
proceeds from one end of the fragment toward its middle in a
strand-specific manner, which leads to an underrepresentation of
tags in the immediate proximity of the TFBS.

QuEST first constructs two separate profiles, one for forward and
one for reverse tags. These profiles are characterized by areas of
strong enrichment where tags are particularly dense (Fig. 1). The
distance between forward and reverse profiles is not known a priori,
but it is important to account for it and to correctly combine the two
separate profiles into one. As this distance may vary considerably
from experiment to experiment, QuEST estimates it from a parti-
cularly robust subset of the data. We refer to half of this distance as
the ‘peak shift’.

Once the experiment-specific peak shift
has been estimated, the forward and reverse
profiles are shifted and summed to produce
the combined density profile (CDP) on
which all subsequent analyses are carried
out (Fig. 1b and Supplementary Fig. 1
online). By combining the profiles in
this manner, QuEST accomplishes two key
aspects of ChIP-Seq analysis: first, the

signals from reverse and forward reads are represented by a single
classifier; second, local maxima of this classifier correspond to
protein-DNA cross-linking points, providing an estimate for the
location of the TFBS.

QuEST then searches the CDP for enriched loci in a process
referred to as ‘peak calling’. Specifically, QuEST identifies candi-
dates for CDP peaks as positions in the reference genome corre-
sponding to local maxima of the CDP with sufficient enrichment
compared to the control data. The strongest of these are likely to be
due to real binding events, whereas weaker-scoring peaks may be
false positives, requiring the setting of a CDP threshold for peak
calling. As this threshold may vary considerably between experi-
ments, the desired balance between sensitivity and specificity can be
achieved by a calibration procedure. Briefly, we separated the
negative control data into two sets, one of which we used as a
pseudo-ChIP sample in which peaks are to be predicted and the
other of which we used as a background for this sample. Any peak
that is predicted in this comparison is a false positive. Hence, the
false-discovery rate estimate is the ratio of the number of peaks
predicted in the pseudo-ChIP analysis to the number of peaks
identified in the real ChIP experiment. This approach allows the
user to set specific thresholds and determine the false-discovery
rate, or vary the thresholds until a desired false-discovery rate is
achieved (Supplementary Fig. 2 online).

As a final result, for each peak in the list of high-confidence peak
calls, QuEST reports a score quantifying the tag enrichment at the
peak and a genome coordinate that corresponds to the position of
that peak. Each such coordinate is a predictor of the position
of a binding event, likely an endogenous TFBS occupied by the
immunoprecipitated transcription factor. The kernel density
estimation–derived score QuEST reports for each peak is propor-
tional to the frequency at which the TFBS was present in the
sequenced library. Because the score reflects the amount of evidence
for the peak, QuEST ranks the final peak calls accordingly.

Performance of QuEST
To evaluate key aspects of the performance of QuEST, we generated
five ChIP-Seq libraries from the human Jurkat cell line and
sequenced them using the Solexa platform (Table 1). One library
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Figure 1 | QuEST’s representation of ChIP-Seq data using density profiles.

(a) GABP ChIP-Seq reads from the promoter and CpG island of the gene

encoding nitric oxide synthase–interacting protein. Hypothetical schematic

of GABP binding in five cells to the corresponding DNA fragments with

sequencing reads marked in blue (forward) or red (reverse). Actual read data

are shown below. (b) Forward and reverse read density profiles derived from

the read data (top) contribute to the CDP (bottom). The zero x-coordinate

corresponds to position 54775300 of human chromosome 19 (US National

Center for Biotechnology Information (NCBI) build 36). One area of sequence

read enrichment from the genome-wide profiles is shown for illustration.

Table 1 | ChIP-Seq data and analysis summary

GABP SRF

NRSF (polyclonal

antibody)

NRSF (monoclonal

antibody)

Number of aligned ChIP reads 7,862,231 8,721,730 8,813,398 5,358,147

Number of peaks called by QuEST 6,442 2,429 2,960 2,596

False-discovery rate estimate 1/6,442 1/2,429 o1/2,960 1/2,595

Percent peaks near genes (o2 kb or

within genes)

83 72 53 53
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each was from ChIPs against the transcriptional activators GABP
and SRF, two were from ChIPs against the transcriptional repressor
NRSF (one using a polyclonal and the other a monoclonal anti-
body), and the last was a negative control library (reversed cross-
links, no immunoprecipitation or RX-noIP). We generated 7.9, 8.7,
8.8 and 5.4 million mapped sequence tags for GABP, SRF, NRSF
polyclonal and NRSF monoclonal datasets, respectively (Table 1), as
well as 17.4 million mapped tags for the RX-noIP library. QuEST
identified 6,442 (GABP), 2,429 (SRF), 2,960 (NRSF polyclonal) and
2,596 (NRSF monoclonal) CDP peak positions with significant en-
richment of ChIP sequencing reads (we defined significance by the
experiment-specific false discovery rates; Table 1). Saturation ana-
lysis indicated that these libraries were sequenced to sufficient depth
to identify the majority of peaks (Supplementary Fig. 3 online).

To test robustness and reproducibility of QuEST’s ability to
accurately quantify tag enrichment, we compared QuEST scores of
the 2,320 peaks that were in common for the two NRSF datasets.
These scores were strongly correlated (r¼ 0.97; Fig. 2a). The mean
distance between corresponding peaks from the two datasets was
0.2 bp, with a s.d. of 13.5 bp (Fig. 2b), demonstrating highly
reproducible peak call positions.

We identified previously described transcriptional targets of
GABP, SRF and NRSF to provide some validation for the peaks
identified by QuEST in this study. These include GABP-regulated
interleukin-16 (IL16)12, cytochrome c oxidase subunits IV and
Vb12, and SRF-regulated FHL2 (ref. 21). QuEST also identified
three peaks in the autoregulated SRF gene16, one in the promoter
and two in one of the introns. Finally, the genes Calb1, Bdnf, Syt4
and Nav1 are NRSF targets in mouse embryonic stem cells20, and
their orthologs were also ‘marked’ by peaks in our data.

Theoretically, the genomic coordinate QuEST reports for each of
its peaks should be ‘marked’ by the canonical TFBS motif. We first
determined canonical motifs and their corresponding position
specific scoring matrices (PSSMs) using the de novo motif finder
MEME22. For each ChIP-Seq experiment, the input data into
MEME was the set of 200 bp sequences from around each peak
call. The resulting motifs closely corresponded to the previously
established canonical recognition sites for each of the three
factors12,15,23. To then determine the specific positions of motifs
within the peak call regions, we searched for matches of the PSSMs
in the 200 bp around each peak, using a log-odds-ratio approach

and a stringent threshold. The majority of
peaks contained one or more significant
PSSM matches, which we used to evaluate
the resolution of QuEST peak calls. Remark-
ably, the mean distance between peak call
and motif ranged from 0.1 bp in the NRSF
monoclonal set to 2.55 bp for GABP, with the
s.d. ranging from 13.4 bp to 21.8 bp (Fig. 3).

Leveraging QuEST peak calls for biological
insight
Our MEME analysis found that the canoni-
cal motifs of each transcription factor were
most notably enriched in their respective
CDP peaks (Fig. 4). Canonical motifs
explain 71% (GABP), 33% (SRF) and 69%
(NRSF) of the peaks after accounting for
motifs that are expected to occur by chance

(Supplementary Fig. 4 online), illustrating QuEST’s high specifi-
city in TFBS discovery. The comparatively low fraction of CDP
peaks in the SRF dataset explained by the presence of a canonical
motif is likely due to interactions with cofactors. GABP and SRF,
both of which assemble into a complex with a pair of DNA binding
subunits12,16, most frequently contain two motifs (Fig. 4), in
contrast to NRSF peaks, which typically contain one motif.

For SRF, the initial MEME analysis also revealed the presence of
the SP1 motif. Presence of this motif explains a substantial fraction
of peaks (48%), providing evidence that the previously suggested
interaction24 between SP1 and SRF is common.

We also conducted a second round of MEME analyses focusing
only on those peak-associated sequences that did not contain the
canonical SRF motif. Such peaks may be due to indirect DNA
binding of the targeted factor via a different, interacting, DNA-
binding protein. This analysis yielded an additional significant motif
that resembled the recognition site of the Ets family of factors. This
motif explained the presence of an additional 17% of the SRF peaks.
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peak calls and TFBS motif centers. Histograms in each panel represent the

distribution of peak distances to the nearest high-scoring motif.
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The prevalence of an Ets-like motif may be due to the previously
described interaction between SRF and the Ets factor ELK4
(refs. 17,25). Notably, the antibody to SRF has no detectable
cross-reactivity with other proteins as determined by western blot
analysis (data not shown). We applied the same strategy to the
NRSF dataset, which reproduced the discovery of NRSF half-sites
previously reported (Fig. 4), and resulted in an additional 16% of
peaks explained. We found no other significant motifs for GABP.

We observed that a large fraction of SRF peaks (29%) occurred
within 100 bp of GABP peaks, and NRSF peaks almost never
coincided with either SRF or GABP peaks. The close proximity of
SRF and GABP peaks might suggest that SRF not only physically
interacts with the Ets factor ELK4 (ref. 17) but, in some promoters,
with GABP as well.

QuEST analyses can be combined with orthogonal genome-wide
data or resources such as GO to provide general insights into the
functions of proteins targeted by ChIP-Seq experiments. For both
GABP and SRF, a majority of peak calls (83% and 72%, respectively)
were within 2 kb of a gene. By contrast, only 53% of NRSF peak calls
were within 2 kb of a gene, suggesting that NRSF’s effects on gene
regulation are, on average, exerted over longer distances than those
of GABP and SRF. Having obtained a set of peak-associated genes,
we then conducted gene expression profiling and GO analyses.

Gene expression profiling revealed that NRSF-associated genes
were expressed at significantly lower relative levels than the average
of all genes (Wilcoxon test, P o 2.2 � 10–16; nNRSF ¼ 1,274,
nall ¼ 20,588). This result is consistent with NRSF’s known general
function as a transcriptional repressor and with previous results5.
By contrast, both SRF-associated genes and GABP-associated genes
were expressed significantly higher than the average gene (Wilcox-
on test, Po2.2 � 10–16; nSRF ¼ 1,936, nGABP ¼ 5,394, nall ¼ 20,588;
Supplementary Fig. 5 online), which is consistent with their
activator functions12,15.

GO analysis26 (Supplementary Tables 1–3 online) revealed that
NRSF-associated genes are mostly involved in neuronal function,
which is consistent with previous results5. Both SRF and GABP had
significant enrichment of genes that are involved in basic cellular
processes, particularly those related to gene expression. These
results are consistent with both GABP and SRF being fundamental
regulators of basic cell biology, rather than specialized factors with
specific physiological roles. GABP is the more broadly acting of the
two factors, as reflected by its almost threefold larger number of
peaks and associated genes.

DISCUSSION
The high resolution of QuEST peak calls is noteworthy. For
example, 89% of CDP peaks that contained a matching canonical
TFBS motif in the NRSF polyclonal data were within 25 bp of
the motif center and 56% were within 10 bp (Fig. 3). QuEST
thereby brings within reach the ability to identify at high confidence
the precise locations at which DNA binding proteins interact with
the genome.

The score QuEST generates for each peak, according to which the
peaks are ranked, is directly proportional to the amount of tag
enrichment in the set of DNA fragments that yielded the sequences.
Thus, a peak with a score of 50 is due to a TFBS that was twice as
abundant in the DNA sample as a TFBS with a peak score of 25.
Although both scores may be above the reporting cutoff chosen (by
the desired false-discovery rate), and are therefore considered real,
there is twice the support for (and hence the confidence in) the
stronger peak.

One potential drawback of QuEST is that it does not convert
peak scores into definitive P values. Instead, the stringency of peak
calls is determined by the score threshold at which the peaks are
reported, and the false-discovery rate is calculated for this thresh-
old. Users can either use the default threshold or specify their own
and assess the stringency through the false-discovery rate.

Model-free analysis as implemented in QuEST may be consid-
ered less powerful than approaches that leverage the additional
power of an explicit model for the ChIP-Seq data. However, such
explicit modeling will likely be elusive in the near future because of
the many experimental and biological factors that influence the
eventual enrichment signal that is detected by ChIP-Seq. Some part
of the enrichment signal should reflect occupancy by the transcrip-
tion factor, but confounding factors such as antibody specificity,
epitope accessibility and susceptibility of TFBS-adjacent DNA to
shearing will be difficult to model explicitly. Furthermore, down-
stream manipulation necessary for library building, especially
library amplification and sequencing, introduce additional biases
into the enrichment signal. Together, these factors contribute to
increased variance of signal strength across the binding sites and
complicate detection of weak binding signals. Application of
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QuEST or similar approaches will enhance our empirical under-
standing of ChIP-Seq data during the next few years.

METHODS
Density profiles. Individual density profiles for forward and
reverse reads at any position i of the genome are given by

Hþ;�ðiÞ ¼
1

h

Xi + 3h

j ¼ i � 3h

K ðj� iÞ=hð Þ � Cþ;�ðjÞ;

where h is the kernel density bandwidth (we used h ¼ 30 bases),
K(x) ¼ exp(–x2 / 2) / (2p)0.5 is the Gaussian kernel density
function, and C+;– (j) gives the number of 5¢ read ends at position
j for forward and reverse reads, respectively. In contrast to the
original kernel density estimator11, our density profiles represent
unnormalized density estimates in which the sum is limited to
sample points proximal to any given position (within 3 kernel
density estimation bandwidths). These modifications were done
for computational convenience (Supplementary Methods online).

The CDP used in actual peak calling is calculated according to
the formula H(i) ¼ H+(i – l) + H–(i + l), where l is a peak shift
parameter estimate, and H+ and H– are the positive-strand and
negative-strand strand density profiles as defined above.

Peak shift estimation. For regions in which the number of tags
exceeded 600 in a window of 300 bp, we calculated forward and
reverse profiles and recorded local maxima. Regions for which the
highest scoring local maximum was 20-fold or greater than the
next scoring maximum, for both negative and positive strands,
and for which the enrichment in the ChIP sample was at least
20-fold over that for the RX-noIP sample, were selected. The peak
shift parameter value was calculated as half of the average distance
between peaks on the negative and positive strand. This estimate
was robust across all 4 ChIP datasets (Supplementary Fig. 6
online) and was highly concordant for the two NRSF datasets.

Peak calling. Candidate peaks were identified where the QuEST
score profile achieved a local maximum within a 21 bp window,
provided their QuEST score was above the ChIP threshold, which
we determined in conjunction with the false-discovery rate pro-
cedure described below. Within each region, local peaks were
identified. A peak was eliminated when the lowest point between it
and the adjacent higher peak was greater than 0.9 times the CDP
value of the higher peak. The remaining peaks were reported as
‘calls’ if (i) the value of background CDP was lower than the
background CDP threshold or (ii) the ratio of the of ChIP CDP to
the background CDP exceeded a specified threshold (referred to as
the ‘rescue ratio’).

False discovery rate estimate for the number of peaks. For each
experiment, the RX-noIP data were split into two datasets, one of
which served as a pseudo-ChIP dataset (and matched the ChIP
data in the number of reads) and the other served as the back-
ground set. Then CDPs were calculated for ChIP, pseudo ChIP
and background datasets. Using the same score thresholds and
rescue ratios, peaks were called in the ChIP and pseudo-ChIP
datasets independently by comparison to the background data.
The number of called peaks in the pseudo-ChIP data were
the false-discovery number, and the false-discovery rate was the

false-discovery number divided by the number of peaks called in
the ChIP-Seq experiment. For identification of peaks that we used
in subsequent MEME analyses, a rescue ratio of 10 was used for all
datasets, and for each dataset the score threshold was set such that
the false-discovery number was 1.

MEME analyses. For motif identification we extracted, for each
dataset separately, ‘peak-associated sequences’ that comprised the
set of 200 bp sequences surrounding each peak call. MEME was
then applied with all default parameters to yield overrepresented
motifs in each dataset. To identify alternative motifs in the SRF
and NRSF data, a log-of-odds threshold of 3.0 was used to
remove the peaks containing canonical motifs in the 200 bp
window around the peak, after which MEME was applied again
(Supplementary Methods).

MAST analyses. The number of peaks explained by a particular
motif was generated by taking the maximum of the difference
between the total number of peaks containing a motif and the
number that could be explained by chance at a range of strin-
gencies (E values; Supplementary Methods) using the MEME tool
MAST. For MAST curves, see Supplementary Figure 4.

Additional methods. Descriptions of ChIP-Seq library construc-
tion and sequencing, gene expression analysis, density profile
generation, peak calling and MEME-based motif discovery are
available in Supplementary Methods.

Software availability. QuEST software is freely available for
nonprofit use at http://mendel.stanford.edu/sidowlab/downloads/
quest/. All data presented in this study (Rx-noIP and ChIP-Seq
data, and peak call coordinates) are available at the same website.

Note: Supplementary information is available on the Nature Methods website.
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